There When You Need Us We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available to assist you should you ever have any questions or concerns about your water. #### Water Conservation You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips: - Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity. - Turn off the tap when brushing your teeth. - Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year. - Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year. - Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak. ## Substances That Could Be in Water To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include: **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems; **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791. ## Important Watering Notice Because of excessive water usage during dry periods and the effect it has upon Del-Co's ability to meet essential health and safety needs in homes, businesses, and fire protection, Del-Co has set the following year-round mandatory watering restrictions: Addresses ending with an even number may water on Sunday, Wednesday, and Friday. Addresses ending with an odd number may water on Tuesday, Thursday, and Saturday. #### ABSOLUTELY NO WATERING ON MONDAYS! We encourage customers to consider best practices for maintaining your lawn in the future, which will also reduce your water bills and conserve water. We are providing the following information: Maintaining the growth and green of your lawn during the driest period of summer will usually require approximately an inch of water each week. Lawn sprinklers placed and left for one to two hours per area should apply the one inch of water needed to saturate the soil to a depth of six to eight inches. However, watering too frequently or overwatering stimulates excessive top growth, resulting in the need for more frequent mowing. It also leads to the development of shallow roots, making the lawn more susceptible to pests, disease, and heat-drought stress. The best time to water is during the early morning, when evaporation will be limited. Watering the lawn in the evening leaves the lawn wet all night, encouraging disease. ## **QUESTIONS?** For more information about this report, or for any questions relating to your drinking water, please call Damon Dye at (740) 548-4037 or Spencer Sheldon at (740) 548-7746. ## Where Does My Water Come From? el-Co's primary surface water supplies are the Olentangy River and the Alum Creek Reservoir. The Olentangy River runs for 88 miles, originating in Galion and flowing through the Scioto River. The Alum Creek Reservoir is located about ten miles southeast of Delaware and covers an average of 3,400 surface acres. Del-Co also has a groundwater supply from four wells rated at 1,300 gallons per minute each. Combined, our treatment facilities provide our customers with an average of nearly ten million gallons of drinking water per day. The watershed for our water supply is part of the Upper Scioto Watershed, which covers an area of roughly 450 square miles on the Olentangy River and 125 square miles on Alum Creek. An average of 38 inches of rainfall annually refills the watershed. Snowmelt also contributes to the water supply. To learn more about our watershed on the Internet, go to the U.S. EPA's Surf Your Watershed Web site at www.epa.gov/surf. ## Important Health Information Come people may be more vulnerable to Contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline. ## Lead in Home Plumbing If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. # Monitoring Requirements Were Not Met for Del-Co Water Company We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During 2012, we did not complete all monitoring for water-quality parameters in the distribution system and therefore cannot be sure of the quality of your drinking water during the time sampling was not performed. #### What Should I Do? There is nothing you need to do at this time. You do not need to boil your water or take other corrective action. This notice is to inform you that Del-Co did not monitor and report results for all water-quality parameters in the public drinking water system during 2012, as required by the Ohio Environmental Protection Agency. Due to an error, Del-Co failed to take a required series of samples. #### What Is Being Done? Upon being notified of this violation, Del-Co was required to have the drinking water analyzed for the above-mentioned parameters. We have taken steps to ensure that adequate monitoring will be performed in the future. For more information, please contact Damon Dye or Spencer Sheldon at 740-548-7746 or at 6658 Olentangy River Road, Delaware, Ohio 43015. #### Source Water Assessment The Del-Co Water Company's primary sources of water are the Olentangy River and the Alum Creek Reservoir. These surface water sources supply water to three of the system's four water treatment plants: the Olentangy Plant, the Ralph E. Scott (Alum Creek) Plant, and the Timothy F. McNamara (Old State) Plant. Surface water is by its nature susceptible to contamination, and there are numerous potential contaminant sources, including agricultural runoff, oil/gas wells, inadequate septic systems, leaking underground storage tanks, and road and rail bridge crossings. As a result, the surface water supplied to these plants is considered to have a high susceptibility to contamination. Del-Co also obtains groundwater from its well field in Knox County, which is treated by the Thomas E. Steward Plant. In October of 2001, the Ohio EPA approved Del-Co's Wellhead/Drinking Water Source Protection Plan for this well field. The source water here is also considered to have a relatively high susceptibility to contamination due to the lack of a significant confining layer above the sand and gravel aquifer and to the presence of numerous potential contamination sources within the protection area. Historically, the Del-Co public water system has effectively treated its source waters to meet drinking water quality standards. By implementing measures to protect the Olentangy River, Alum Creek Reservoir, and the local aquifer, the potential for water quality impacts can be further decreased. More information on Del-Co Water Company's Drinking Water Source Assessment reports may be obtained by calling the General Manager at (740) 548-7746. ## Sampling Results During the past year, we have taken thousands of water samples in order to determine the presence of specific radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The tables below show only those contaminants that were detected in the water. The state requires us to monitor for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. NOTE: We have a current, unconditioned license to operate our water system. | REGULATED SUBSTANCES | | | | | | | | |--|-----------------|---------------------------|-----------------|--------------------|-------------------|-----------|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | MCL
[MRDL] | MCLG
[MRDLG] | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | TYPICAL SOURCE | | Alpha Emitters (pCi/L) | 2011 | 15 | 0 | 5.7 | NA | No | Erosion of natural deposits | | Asbestos (MFL) | 2011 | 7 | 7 | 0.33 | 0.17-0.36 | No | Decay of asbestos cement water mains; Erosion of natural deposits | | Atrazine (ppb) | 2012 | 3 | 3 | 0.54 | 0.14-1.3 | No | Runoff from herbicide used on row crops | | Barium (ppm) | 2012 | 2 | 2 | 0.034 | NA | No | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits | | Chlorine (ppm) | 2012 | [4] | [4] | 1.18 | 0.20-2.37 | No | Water additive used to control microbes | | Combined Radium (pCi/L) | 2011 | 5 | 0 | 0.9 | NA | No | Erosion of natural deposits | | Fluoride (ppm) | 2012 | 4 | 4 | 1.05 | 0.80–1.24 | No | Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories | | Haloacetic Acids [HAAs] (ppb) | 2012 | 60 | NA | 40.15 | 14.6–54.2 | No | By-product of drinking water disinfection | | Nitrate (ppm) | 2012 | 10 | 10 | 2.16 | ND-2.16 | No | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | | Simazine (ppb) | 2012 | 4 | 4 | 0.2 | 0.097-0.41 | No | Herbicide runoff | | TTHMs [Total Trihalomethanes] (ppb) | 2012 | 80 | NA | 57.13 | 18.7–81.2 | No | By-product of drinking water disinfection | | Total Organic Carbon [TOC] ¹ (removal ratio) | 2012 | TT | NA | 1.35 | 1.0-5.52 | No | Naturally present in the environment | | Turbidity ² (NTU) | 2012 | TT=1 NTU | NA | 0.29 | 0.05-0.29 | No | Soil runoff | | Turbidity (Lowest monthly percent of samples meeting limit) | 2012 | TT=95% of samples<0.3 NTU | NA | 100 | NA | No | Soil runoff | | Tap water samples were | collected for lead | and copper analy | ses from sample site | s throughout the community | |------------------------|--------------------|------------------|----------------------|----------------------------| | | | | | | | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AL | MCLG | AMOUNT
DETECTED
(90TH%TILE) | SITES
ABOVE AL/
TOTAL SITES | VIOLATION | TYPICAL SOURCE | |--------------------------------|-----------------|-----|------|-----------------------------------|-----------------------------------|-----------|--| | Copper (ppm) | 2012 | 1.3 | 1.3 | 0.22 | 0/50 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Lead (ppb) | 2012 | 15 | 0 | 2.3 | 2/50 | No | Corrosion of household plumbing systems; Erosion of natural deposits | | UNR | FGU | LATED | SUBSTAN | NCFS | |-----|-----|-------|---------|------| | | | | | | | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AMOUNT
DETECTED | RANGE
LOW-HIGH | TYPICAL SOURCE | |---|-----------------|--------------------|-------------------|---| | Bromodichloromethane (ppb) | 2012 | 18 | NA | By-product of drinking water disinfection | | Chloroform (ppb) | 2012 | 65 | NA | By-product of drinking water disinfection | | Dibromochloromethane (ppb) | 2012 | 5.5 | NA | By-product of drinking water disinfection | | Dimethoclor ESA-UCMR ³ (ppb) | 2008 | 1.1 | NA | NA | | | | | | | - ¹The value reported under Amount Detected for TOC is the lowest ratio between percentage of TOC actually removed to the percentage of TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements. - ²Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system. - ³This contaminant was sampled under the Unregulated Contaminant Monitoring Rule (UCMR) List 2 requirements. Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted. For more information on the UCMR, call Spencer Sheldon at (740) 548-7746. ## **Definitions** **AL** (**Action Level**): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MFL (million fibers per liter): A measure of the presence of asbestos fibers that are longer than 10 micrometers. **MRDL** (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. **MRDLG** (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **NA:** Not applicable ND (Not detected): Indicates that the substance was not found by laboratory analysis. **NTU** (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person. pCi/L (picocuries per liter): A measure of radioactivity. ppb (parts per billion): One part substance per billion parts water (or micrograms per liter). **ppm** (parts per million): One part substance per million parts water (or milligrams per liter). **removal ratio:** A ratio between the percentage of a substance actually removed to the percentage of the substance required to be removed. TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.